I. Approval of the February 24, 2011 Minutes

II. Policies, Procedures & Awards Subcommittee
 - Dean’s Third Charge, Part B
 - Award nominations deadline: March 11th

III. Curricular Changes Subcommittee Report
 - New course: BIOL 809
 *Courses with an asterisk indicate a course number change proposal.
 - Course deletions: CHEM 801, CHEM 803, CHEM 807, CHEM 811, and CHEM 966

IV. Petitions & Program Changes Subcommittee Report
 - Anthropology Program Changes (2)
 - Review of Research Skills and Responsible Scholarship proposals (available in Blackboard)

V. Old Business

VI. New Business
I. Approval of the February 24, 2011 Minutes

The University of Kansas
College of Liberal Arts & Sciences
COMMITTEE ON GRADUATE STUDIES

MINUTES
FEBRUARY 24, 2011, 11:00AM
STRONG HALL – ROOM 210

Members Present: Bart Dean, Alison Gabriele, Tanya Hart, Boone Hopkins, Daniel Katz, Brian Laird, Eve Levin, Paul Mirecki, Jim Mielke (*ex officio*), Ed Morris, Kees van der Veen, and Gina Westergard
Others in attendance: Katie Rockey (COGA), Lea Smith (COGA), and Savanna Trent (COGA)

The meeting was called to order by Brian Laird at 11:03 a.m.

Minutes
A motion was made and seconded to approve the February 10, 2011, minutes of the Committee on Graduate Studies, as written. The motion was approved unanimously.

Report of the Policies, Procedures & Awards Subcommittee
(Ed Morris, reporting)

A motion was made and seconded to approve the recommendation regarding policy location. The motion was approved unanimously.

Report of the Petitions & Program Changes Subcommittee
(Alison Gabriele, reporting)

- A motion was made and seconded to approve the Community Health and Development Graduate Certificate Renewal proposal. The motion was approved unanimously.
- Seven Research Skills and Responsible Scholarship proposals were reviewed by the subcommittee. A motion was made and seconded to forward the proposals to the Office of Graduate Studies. The motion was approved unanimously.

Old Business

- The Committee discussed the New GTA Offer Letter template developed by HR/EO. Brian Laird will form a recommendation reflecting the Committee’s suggestions.

There being no further business, the meeting was adjourned by Brian Laird at 11:25 a.m.

Upcoming Meetings

The next meetings of the CGS Subcommittees are Thursday, March 3, 2011.
- Curricular Changes, 11:00 a.m. - 12:30 p.m., 210 Strong Hall
- Petitions & Program Changes, 11:00 a.m. - 12:30 p.m., Dean’s Office Small Conference Room 200 Strong
- Policies, Procedures, and Awards will not meet in person, but will conduct committee business via email.

The next meeting of the Committee on Graduate Studies is Thursday, March 10, 2011, 11:00 a.m., 210 Strong Hall.

Respectfully submitted by Savanna Trent, COGA
II. Policies, Procedures & Awards Subcommittee Report

1. Dean’s Third Charge, Part B

The Dean’s third charge to the CGS was to “Implement strategies for improved communication and consultation regarding (a) course and program changes, (b) university-level requirements (e.g., ethics, research skills), and (c) redundant programming.” We have addressed charges 3a and 3c. Charge 3b remains: “Implement strategies for improved communication and consultation regarding university-level requirements (e.g., ethics, research skills)” Not being privy to the precise nature and the need for improved communication and consultation among with the Dean’s Office, CGS, COGA, R&GS, and R&GS’s Executive Council -- we are loath to recommend changes so specific that they might be unworkable in the present context. Generalities will not solve the problem either. So, we make three recommendations:

First, we recommend that the Dean of the College of Liberal Arts and Sciences (CLAS) and the Dean of the Office of Research and Graduate Studies (R&GS) (or the Deans’ representatives) attend the first meeting of Committee on Graduate Studies’ (CGS) each academic year. They (or their representatives) would review their concerns, plans, and proposals for the year, especially those pertinent to the College Office of Graduate Affairs (COGA).

Second, we recommend that the three CLAS representatives on the R&GS’s Executive Council (Ex Con) meet, once each, three times a year with the CGS. This would be right before fall break, at the first CGS meeting of the spring semester, and right before spring break. The representatives would review the R&GS’s progress in addressing with its concerns, plans, and proposals (and any new ones) and the CGS chair would do the same for the CGS, especially regarding concerns, plans, and proposals pertinent to COGA.

Third, we recommend that R&GS Executive Council and the CGS exchange and formally review the minutes of their respective meeting’s at each of their meetings throughout the academic year.

2. Award nominations deadline: March 11th

III. Curricular Changes Subcommittee Report

The Curricular Changes Subcommittee recommends the following new courses, course changes, and course deletions to the CGS:

1. New course: BIOL 809

BIOLOGY

BIOL 809 Graduate Molecular Biosciences for Medicinal Chemists (4). An introduction to the advanced study of biochemistry, microbiology, and neurobiology for graduate students in Medicinal Chemistry. Meets concurrently with BIOL 807. Prerequisite: Admission to the graduate program in Medicinal Chemistry and consent of instructor. LEC

JUSTIFICATION
The 6-credit course BIOL 807 Graduate Molecular Biosciences is a requirement for all first-year graduate students in Molecular Biosciences, and presents lectures across the range of all faculty interests in the Molecular Biosciences Department. Faculty in the Medicinal Chemistry Dept.
would like many of their students to learn the majority of this information (especially biochemistry and neurobiology topics), and feel that their students would benefit from attending many of the lectures that the Molecular Biosciences students take. But not all of the lectures are germane to Medicinal Chemistry students, and those students must take many credits of Medicinal Chemistry courses, so taking a 6-credit course in another department would not be possible. Therefore, we propose to allow Medicinal Chemistry students to take 2/3 of BIOL 807 as a smaller 4-credit course of material particularly germane to the field of Medicinal Chemistry. The course lectures are given and tested in a modular fashion, so it adapts well to this approach. The course would still be taught entirely by faculty with appointments in Molecular Biosciences, and so would retain the BIOL designation.

*Courses with an asterisk indicate a course number change proposal.

CHEMISTRY

CHANGE: NUMBER

(OLD)
CHEM 731 Fundamentals and Methods of Analytical Chemistry (3). An introductory graduate level course in analytical chemistry, in which the principles of electrochemistry, spectroscopy, and separation science are utilized to solve analytical problems in inorganic, organic and biochemistry. Prerequisite: An undergraduate course in analytical chemistry, a year of organic chemistry, and a year of physical chemistry

LEC

(NEW)
CHEM 720 Fundamentals and Methods of Analytical Chemistry (3). An introductory graduate level course in analytical chemistry, in which the principles of electrochemistry, spectroscopy, and separation science are utilized to solve analytical problems in inorganic, organic and biochemistry. Prerequisite: An undergraduate course in analytical chemistry, a year of organic chemistry, and a year of physical chemistry

LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: NUMBER & PREREQUISITE

(OLD)
CHEM 737 Coordination and Organometallic Chemistry (3). An examination of the basic foundations of coordination chemistry and organometallic chemistry including symmetry methods, bonding, magnetism, and reaction mechanisms. Two semesters of organic chemistry and one semester of physical chemistry in which quantum chemistry is introduced. The latter course may be taken concurrently with CHEM 737

LEC

(NEW)
CHEM 730 Coordination and Organometallic Chemistry (3). An examination of the basic foundations of coordination chemistry and organometallic chemistry including symmetry methods, bonding, magnetism, and reaction mechanisms. Prerequisite: Two semesters of organic chemistry and one semester
of physical chemistry in which quantum chemistry is introduced. The latter course may be taken concurrently with CHEM 730. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: NUMBER & TITLE

(OLD)
CHEM 742 Physical Organic Chemistry I (3) An examination of the methods used to probe the mechanisms of organic reactions and of the chemistry of some important reactive intermediates. Topics will include isotope effects, kinetics, linear free energy relationships, solvent effects, a continuing discussion of orbital symmetry, rearrangements, carbocations, carbanions, carbenes, radicals, excited states, and strained molecules. Prerequisite: CHEM 740 LEC.

(NEW)
CHEM 840 Physical Organic Chemistry (3) An examination of the methods used to probe the mechanisms of organic reactions and of the chemistry of some important reactive intermediates. Topics will include isotope effects, kinetics, linear free energy relationships, solvent effects, a continuing discussion of orbital symmetry, rearrangements, carbocations, carbanions, carbenes, radicals, excited states, and strained molecules. Prerequisite: CHEM 740 LEC.

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We have requested that the follow-on course, "Physical Organic Chemistry II," be deleted, hence the "I" in the title is no longer applicable.

CHANGE: DESCRIPTION & TITLE

(OLD)
CHEM 750 Quantum Chemistry and Spectroscopy (3). An introductory study of the application of quantum mechanics to atomic and molecular systems. Includes an introduction to the basic principles of quantum theory, description of electronic structure of atoms and molecules, and the foundations of spectroscopy. Contains a brief presentation of group theory and its applications to the analysis of molecular symmetry, spectra and structure. Prerequisite: Two semesters of physical chemistry LEC.

(NEW)
CHEM 750 Introduction to Quantum Mechanics (3). An introduction to the basic principles of quantum theory relevant to atomic and molecular systems. Topics include operators and operator algebra, matrix theory, eigenvalue problems, postulates of quantum mechanics, the Schrodinger equation, angular momentum, electronic structure, molecular vibrations, approximation methods, group theory, and the foundations of spectroscopy. Prerequisite: Two semesters of physical chemistry LEC.

JUSTIFICATION
We are proposing changes to the course title and description that more accurately reflect how the course is currently taught and will be taught in the future.

CHANGE: DESCRIPTION & NUMBER

(OLD)
CHEM 752 Statistical Thermodynamics (3). Thermodynamics and introduction to equilibrium statistical mechanics with emphasis on problems of chemical interest. The course consists of two roughly equal parts:
1) An advanced overview of the laws and concepts of thermodynamics with application to specific problems in phase and chemical equilibria and 2) An introduction to equilibrium statistical mechanics for both classical and quantum systems. CHEM 750 or its equivalent LEC

(NEW)
CHEM 852 Statistical Thermodynamics (3). Thermodynamics and introduction to equilibrium statistical mechanics with emphasis on problems of chemical interest. The course consists of two roughly equal parts: 1) An advanced overview of the laws and concepts of thermodynamics with application to specific problems in phase and chemical equilibria and 2) An introduction to equilibrium statistical mechanics for both classical and quantum systems. Prerequisite: CHEM 750 or its equivalent LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: DESCRIPTION & NUMBER

(OLD)
CHEM 754 Chemical Kinetics and Dynamics (3). Chemical kinetics and introduction to chemical reaction dynamics. The course consists of two parts: 1) An advanced overview of chemical kinetics including reaction mechanisms and rate laws with applications to unimolecular and bimolecular reactions, catalysis, and energy transfer, and 2) An introduction to reaction rate theory including transition state theory. Marcus electron transfer theory, and collision theory. CHEM 750 or its equivalent LEC

(NEW)
CHEM 854 Chemical Kinetics and Dynamics (3). A study of the rates, mechanisms, and dynamics of chemical reactions in gases and liquids. Topics include an advanced overview of classical kinetics, reaction rate theories (classical collision theory, transition-state theory and introductory scattering theory), potential energy surfaces, molecular beam reactions, photochemistry, Marcus electron transfer theory and other areas of current interest. Prerequisite: CHEM 750 or its equivalent. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We are also proposing changes to the course description to improve the wording and better reflect how the course is being taught in practice.

CHANGE: NUMBER

(OLD)
CHEM 763 Organic Synthesis I (3). A discussion of fundamental reactions for the formation of carbon-carbon bonds, oxidation, reduction, and functional group interchange. Prerequisite: CHEM 740 LEC

(NEW)
CHEM 842 Organic Synthesis I (3). A discussion of fundamental reactions for the formation of carbon-carbon bonds, oxidation, reduction, and functional group interchange. Prerequisite: CHEM 740 LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.
CHANGE: DESCRIPTION, NUMBER & PREREQUISITE

(OLD)
CHEM 766 Spectroscopic Identification of Organic Compounds (3). The use of techniques such as infrared, nuclear magnetic resonance, and ultraviolet spectroscopy, and mass spectrometry for elucidating the structure of organic molecules. A lecture and workshop course. Prerequisite: CHEM 626 and CHEM 627, or CHEM 707 LEC

(NEW)
CHEM 742 Spectroscopic Identification of Organic Compounds (3). The use of techniques such as infrared, nuclear magnetic resonance, ultraviolet spectroscopy, and mass spectrometry for elucidating the structure of organic molecules. A lecture and workshop course. Prerequisite: CHEM 626 and CHEM 627. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. One listed prerequisite, CHEM 707, no longer exists.

CHANGE: TITLE

(OLD)
CHEM 810 Physical Chemistry Colloquium (1). Colloquia on various topics of current interest are presented by students, faculty, and visiting scientists. LEC

(NEW)
CHEM 810 Colloquium:_____ (1). Colloquia on various topics of current interest are presented by students, faculty, and visiting scientists. LEC

JUSTIFICATION
We are replacing five different colloquium courses in the various sub-fields of Chemistry with this single course which can be offered with different topics.

CHANGE: CREDIT HOURS, DESCRIPTION, NUMBER, PREREQUISITE, & TITLE

(OLD)
CHEM 903 Electrical Methods of Analysis (2). An advanced treatment of selected electroanalytical techniques and methodology. The theory is augmented by applied laboratory work. Prerequisite: CHEM 731 or its equivalent LEC

(NEW)
CHEM 822 Electrochemical Analysis (3). An advanced treatment of selected electroanalytical techniques and methodology. Prerequisite: CHEM 720. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. For this course, we are also updating the course name, description and credit hours to fit the department's view of how it will best address the needs of our graduate students.

CHANGE: NUMBER & PREREQUISITE

(OLD)
CHEM 904 Analytical Separations (3). An advanced treatment of analytical separations techniques. The
theory of separation science will be augmented with discussion of practical aspects of instrumentation and experiment design. Prerequisite: CHEM 731 or permission of instructor LEC

(NEW)
CHEM 820 Analytical Separations (3). An advanced treatment of analytical separations techniques. The theory of separation science will be augmented with discussion of practical aspects of instrumentation and experiment design. Prerequisite: CHEM 720. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: DESCRIPTION, NUMBER, & PREREQUISITE

(OLD)
CHEM 908 Spectrochemical Methods of Analysis (3). Lecture and laboratory course; general concepts of encoding chemical information as electromagnetic radiation; major instrumental systems for decoding, interpretation, and presentation of the radiation signals; atomic emission, absorption, and fluorescence; ultraviolet, visible, infrared, and microwave absorption; molecular luminescence; scattering methods; mass spectrometry; magnetic resonance; automated spectrometric systems. Prerequisite: CHEM 731 and CHEM 750 LEC

(NEW)
CHEM 824 Spectrochemical Methods of Analysis (3). General concepts of encoding chemical information as electromagnetic radiation; major instrumental systems for decoding, interpretation, and presentation of the radiation signals; atomic emission, absorption, and fluorescence; ultraviolet, visible, infrared, and microwave absorption; molecular luminescence; scattering methods; mass spectrometry; magnetic resonance; automated spectrometric systems. Prerequisite: CHEM 720. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. For this course, we are also updating the course description and prerequisites to fit the department's view of how it will best address the needs of our graduate students.

CHANGE: DESCRIPTION, NUMBER, & TITLE

(OLD)
CHEM 915 Intermediate Quantum Mechanics (3). The mathematical and physical principles of quantum chemistry, including vector spaces, operators and operator algebra, matrix theory, eigenvalue problems, postulates of quantum mechanics, the Schrodinger equation, angular momentum, approximation methods, and atomic and molecular systems. CHEM 750 or its equivalent. LEC

(NEW)
CHEM 850 Advanced Quantum Mechanics (3). The advanced mathematical and physical principles of quantum mechanics relevant to atomic and molecular systems. Topics may include abstract vector spaces and representations, time-dependent quantum dynamics, electronic structure theory, density matrices, second-quantization, advanced group theory, path integrals, and scattering theory. Prerequisite: CHEM 750 or its equivalent. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We are also proposing changes to the title and description of this course to reflect the previous deletion of CHEM 918, the change in course description for CHEM 750 and the content envisioned for this course moving forward
CHANGE: DESCRIPTION & NUMBER

(OLD)
CHEM 916 Molecular Spectroscopy (3). Quantitative molecular spectroscopy and its chemical applications. The basic principles of the molecular energy levels, selection rules and spectral transition intensities, and spectral interpretation will be discussed and applied to nuclear and electron magnetic resonance, rotational, vibrational, vibration-rotation, Raman, electronic and Mossbauer spectroscopy. CHEM 750 or its equivalent LEC

(NEW)
CHEM 856 Molecular Spectroscopy (3). Quantitative molecular spectroscopy and its chemical applications. The basic principles of the molecular energy levels, selection rules and spectral transition intensities will be discussed and applied to rotational, vibrational, electronic, and nuclear magnetic spectroscopy. Linear and nonlinear spectroscopies will be addressed. Prerequisite: CHEM 750 or its equivalent. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We are also proposing minor changes to the course description to better reflect the current content of the course.

CHANGE: NUMBER & PREREQUISITE

(OLD)
CHEM 917 Advanced Statistical Mechanics (3). Advanced equilibrium statistical mechanics and introduction to nonequilibrium statistical mechanics. Topics include: the theory of liquids, critical phenomena linear response theory and time correlation functions, Langevin dynamics, and molecular hydrodynamics. (Same as PHSX 971.) CHEM 909 or equivalent LEC

(NEW)
CHEM 950 Advanced Statistical Mechanics (3). Advanced equilibrium statistical mechanics and introduction to nonequilibrium statistical mechanics. Topics include: the theory of liquids, critical phenomena linear response theory and time correlation functions, Langevin dynamics, and molecular hydrodynamics. (Same as PHSX 971.) CHEM 852 or equivalent. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. (Also CHEM 909 no longer exists.)

CHANGE: NUMBER & PREREQUISITE

(OLD)
CHEM 920 Mass Spectrometry (3). An introduction to mass spectrometry. The various ionization techniques and mass analyzers will be discussed, and many examples of different mass spectrometric applications will be introduced. Prerequisite: CHEM 731 or permission of instructor LEC

(NEW)
CHEM 826 Mass Spectrometry (3). An introduction to mass spectrometry. The various ionization techniques and mass analyzers will be discussed, and many examples of different mass spectrometric applications will be introduced. Prerequisite: CHEM 720. LEC
JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: NUMBER & PREREQUISITE

(OLD)
CHEM 925 Bioanalysis (3). A course covering important aspects in modern chemical measurement with particular emphasis placed on bioanalysis. This course will survey the modern analytical challenges associated with the ongoing efforts in genomics and proteomics and discuss future trends in methods in instrumentation. Prerequisite: CHEM 731 or permission of instructor LEC

(NEW)
CHEM 828 Bioanalysis (3). A course covering important aspects in modern chemical measurement with particular emphasis placed on bioanalysis. This course will survey the modern analytical challenges associated with the ongoing efforts in genomics and proteomics and discuss future trends in methods in instrumentation. Prerequisite: CHEM 720. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: NUMBER & PREREQUISITE

(OLD)
CHEM 963 Organic Synthesis II (3). A survey of important techniques in organic chemistry with respect to scope, limitations, mechanism, and stereochemistry. Emphasis will be placed on new synthetic methods and application of such methods to the synthesis of structurally interesting compounds, particularly natural products. Prerequisite: CHEM 763 LEC

(NEW)
CHEM 942 Organic Synthesis II (3). A survey of important techniques in organic chemistry with respect to scope, limitations, mechanism, and stereochemistry. Emphasis will be placed on new synthetic methods and application of such methods to the synthesis of structurally interesting compounds, particularly natural products. Prerequisite: CHEM 842 LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical.

CHANGE: DESCRIPTION, NUMBER, PREREQUISITE, & TITLE

(OLD)
CHEM 982 Inorganic Structure and Mechanisms (3). The use of quantum theory and group theory in interpreting bonding and physical and chemical properties in inorganic compounds. Mechanistic aspects of transition metal chemistry including substitution reactions, electron transfer reactions, rearrangement reactions, ligand reactions and inorganic photochemistry. Prerequisite: CHEM 737. LEC

(NEW)
CHEM 830 Structure, Bonding and Spectroscopic Methods in Inorganic Chemistry (3). An introduction of quantum and group theories in relation to bonding and physicochemical properties of inorganic substances. Topics include vibrational and electronic spectroscopies, magnetism, and inorganic photochemistry. Prerequisite: CHEM 730. LEC
JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We are also reorganizing the content in this course and two others (proposed new numbers CHEM 832 and 930) to make the courses more coherent and better organized.

CHANGE: DESCRIPTION, NUMBER, PREREQUISITE, & TITLE

(OLD)
CHEM 984 Physical Methods (3). A survey of modern spectroscopic and nonspectroscopic physical methods in chemistry with emphasis on methods applicable to inorganic compounds. For each method, a brief introduction to underlying theoretical principles will be given and examples of applications from the literature will be discussed in detail. Prerequisite: CHEM 982. LEC

(NEW)
CHEM 832 Inorganic Reaction Mechanisms and Catalysis (3). Mechanistic aspects of transition metal chemistry including substitution reactions, electron transfer reactions, rearrangement reactions, ligand reactions and inorganic photochemistry. Principles and applications of heterogeneous and homogeneous catalytic processes emphasizing catalysis at transition metal centers. Prerequisite: CHEM 730. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We are also reorganizing the content in this course and two others (new course numbers CHEM 830 and 930) to make them more coherent and well-defined.

CHANGE: DESCRIPTION, NUMBER, PREREQUISITE, & TITLE

(OLD)
CHEM 986 Bioinorganic and Catalytic Chemistry (3). A survey of metalloproteins and metalloenzymes and their structures and functions, including recent advances in biomimetic modeling. Principles and applications of heterogeneous and homogeneous catalytic processes emphasizing catalysis at transition metal centers. LEC

(NEW)
CHEM 930 Bioinorganic Chemistry (3). A survey of metalloproteins and metalloenzymes, their structures and functions, including recent advances in biomimetic modeling, small molecule activation in biological systems, and related physical methods. Prerequisite: CHEM 832. LEC

JUSTIFICATION
We are undertaking a renumbering of our graduate courses to make the numbering systematic and logical. We are also reorganizing the content in this course and two others (new course numbers CHEM 830 and 832) to make them more coherent and well-defined. An appropriate prerequisite is added for this course.

CLASSICS

CHANGE: CREDIT HOURS, GRADING

(OLD)
GRK 899 Thesis (1-4). THE

(NEW)
GRK 899 Thesis (1-6). THE
JUSTIFICATION
To hold a GTAship a minimum of 6 hours of enrollment is required. We have occasionally had students teaching abroad with HWC who needed 6 hours of thesis to teach. This change will make enrollment easier in these cases, as well as allow us more flexibility in thesis hours earned. A glance at the catalog shows that most depts. have credit hours for 899 of 1-6 or even higher.
Changing from P grading to S/U.

CHANGE: CREDIT HOURS, GRADING

(OLD)
LAT 899 Thesis (1-4). THE

(NEW)
LAT 899 Thesis (1-6). THE

JUSTIFICATION
To hold a GTAship a minimum of 6 hours of enrollment is required. We have occasionally had students teaching abroad with HWC who needed 6 hours of thesis to teach. This change will make enrollment easier in these cases, as well as allow us more flexibility in thesis hours earned. A glance at the catalog shows that most depts. have credit hours for 899 of 1-6 or even higher.
Changing from P grading to S/U.

MATHEMATICS

CHANGE: DESCRIPTION & TITLE

(OLD)
MATH 735 Introduction to Optimal Control Theory (3). An introduction to the mathematical methods of deterministic control theory is given by considering some specific examples and the general theory. The methods include dynamic programming, the calculus of variations, and Pontryagin’s maximum principle. Various problems of linear control systems, e.g., the linear regulator problem, are solved. Prerequisite: MATH 320 or equivalent. LEC

(NEW)
MATH 735 Optimal Control Theory (3). An examination of the mathematical methods of deterministic control theory is given by considering some specific examples and the general theory. The methods include dynamic programming, the calculus of variations, and Pontryagin’s maximum principle. Various problems of linear control systems, e.g., the linear regulator problem, are solved. Prerequisite: MATH 320 or equivalent. LEC

JUSTIFICATION
Change course title to more accurately reflect the contents of the course.

3. Course deletions: CHEM 801, CHEM 803, CHEM 807, CHEM 811, and CHEM 966

CHEMISTRY

CHEM 801 Analytical Chemistry Colloquium (1). Review of important aspects of analytical chemistry not covered in the regular graduate courses. LEC

JUSTIFICATION
We are replacing five different colloquium courses in the various sub-fields of Chemistry with a single course (CHEM 810) which can be offered with different topics.
CHEM 803 Chemical Education Colloquium (1). Colloquia in various topics of current interest are presented by students, faculty, and visiting scholars. LEC

JUSTIFICATION
We are replacing five different colloquium courses in the various sub-fields of Chemistry with a single course (CHEM 810) which can be offered with different topics.

CHEM 807 Inorganic Chemistry Colloquium (0-1). Review of important aspects of inorganic chemistry not covered in the regular courses. LEC

JUSTIFICATION
We are replacing five different colloquium courses in the various sub-fields of Chemistry with a single course (CHEM 810) which can be offered with different topics.

CHEM 811 Organic Chemistry Colloquium (1). Credit on presentation of colloquium. LEC

JUSTIFICATION
We are replacing five different colloquium courses in the various sub-fields of Chemistry with a single course (CHEM 810) which can be offered with different topics.

CHEM 966 Physical Organic Chemistry II (3). A detailed consideration of the mechanistic features of some important classes of organic reactions. Discussions will include an examination of molecular orbital theory, linear free energy relationships, and acid-base catalysis. Prerequisite: CHEM 742 and one semester of physical chemistry. LEC

JUSTIFICATION
This course was the province of a single faculty member who has recently retired. There are no plans to teach this course in the foreseeable future.

IV. Petitions & Program Changes Subcommittee Report

1. Anthropology proposal

The two anthropology proposals presented at the last meeting required minor amendments. The catalog-copy format below includes both proposals with revisions in red text (i.e., add core course and add non-thesis option).

This is a change request for the following degree or certificate program: ANTH, M.A.

The requested changes to this degree or certificate program are:

Proposal 1:

Current Requirement: “Students must submit a thesis (preferably not more than 75 text pages in length) to their MA Committee. . . . Students who have performed independent research and have presented findings in the form of a refereed journal article or comparable scholarly work may petition their committee to use such work to fulfill the MA thesis requirement” (Graduate Program, page 6).

Proposed: Alternatives to the traditional thesis be allowed, in the form of a nonthesis research/internship paper or a nonthesis option. (Approved by faculty, December 8, 2010.)
Proposal 2:

Current Courses Requirement: All master's students are required to pass the four core courses: ANTH 701 History of Anthropology; ANTH 702 Current Archaeology; 703 Current Biological Anthropology; 704 Current Cultural Anthropology

Proposed: Incoming master's students with a solid grounding in anthropology should, with consent of their advisor, be required to take three of the core courses. Incoming master's students who lack substantial training in anthropology (bachelor's degree or similar training) should be required to take four core courses. Add a new core course: ANTH 706 Current Linguistic Anthropology.

The change(s) to this program will first take effect: **Fall 2011**

The reasons given for this change are these:

Proposal 1:

The decision to offer a non-thesis option responds to the needs of students with different capabilities and aspirations. By providing these three options, we expect to facilitate the graduation of our MA students in a more timely manner and promote their goals, whether in or outside the academy.

The thesis and published paper options are often considered equivalents. Some students come to us with publications in hand; some pursue publication of original research in the program. Those who demonstrate this level of advanced training, we believe, should be advanced into PhD programs without the unnecessary additional demonstration of writing a thesis. Not only is the peer reviewed publication option equally credible; it is a more efficient demonstration of a student's abilities.

For those who would otherwise linger over their unwritten theses, or who have no desire to pursue a PhD, they can take the additional hours and leave KU with a terminal MA in search of employment or other academic degrees elsewhere.

Proposal 2:

These changes are designed to improve time to degree by reducing the number of core courses students must take. The addition of a new core course in linguistic anthropology reflects the department's commitment to the four-field approach to anthropology, and the addition of a second linguistic anthropologist.

M.A. Degree Requirements

The M.A. program is a general curriculum for students who wish to enter the Ph.D. program in anthropology or who plan to pursue graduate studies only to the M.A. level. Formal requirements for the M.A. include

1. Completion of 30 credit hours of graduate work in anthropology and related disciplines;
2. Effective Fall 2011, incoming graduate students who lack substantial training in anthropology (bachelor’s degree or similar training) are required to take four of the following core courses.: ANTH 701, ANTH 702, ANTH 703, ANTH 704, and ANTH 706. Incoming MA students with a solid grounding in anthropology, with consent of their advisor, are required to take only three (3) core courses.
3. Completion of the subdiscipline requirements;
4. Completion of the M.A. thesis or a non-thesis option; and
5. Passing the final M.A. examination.
1. Thesis Option

Students must submit a thesis (preferably not more than 75 text pages in length) to their M.A. committee. If the committee approves the thesis for defense, the chair then notifies the graduate coordinator to schedule the Master's Examination. The MA examination takes the form of a public oral comprehensive examination of which presentation and defense of the thesis or its alternative are two parts, and an exam over coursework in anthropology constitutes the remainder.

2. Non-thesis Options (effective Fall 2011)

Nonthesis Research Paper Options:

a) Students may produce a significant paper accepted by a journal, edited book or monograph, or other scholarly venue, such as a documentary or museum exhibit. This option must involve anthropological research, either conducted independently or as a significant member of a research team. Co-authorship is allowed, but only if the student has primary responsibility for: 1) conceiving the manuscript or other product; 2) collecting new data or analyzing previously collected data; and 3) writing the manuscript. Students must **publically** present the results of their research and pass an oral comprehensive exam.

OR

b) Students may submit an internship report. Internships may vary in form. They may involve placement with a public or private agency, organization, or firm. The student will have a clearly defined role under the supervision of both the faculty advisor and an identified staff person in the external entity. The internship will normally last for one semester or one summer; it will involve a research project conceived by the student in conjunction with the advisory committee and the staff of the agency. Some internships, particularly in archaeology, may not involve formal placement with an external agency, but rather research done in conjunction with field research or lab analysis. Students choosing this option must complete both Anth 897 and Anth 898, and submit an internship proposal for approval to their advisory committee. They must **publically** present the results of their internship in an oral comprehensive exam that will include a discussion of the applied dimension of their work and its benefit to the public and the discipline.

Students choosing this option must take 36 credit hours, of which at least 30 must be in formal course work. Not more than 6 credit hours can be graduate research hours (ANTH 889-899). Students must pass a final comprehensive oral exam, **open to the public**, over their coursework in anthropology.

Students who complete Options 1 or 2 are eligible for admission to the doctoral program in anthropology. Option 3 results in a terminal master’s degree, and those who elect this option cannot be admitted to the doctoral program.

2. Review of Research Skills and Responsible Scholarship proposals (available in Blackboard).

V. Old Business

VI. New Business