Proposal and rationale for CLAS quantitative reasoning requirement

Proposal:

1. Students should complete a College Algebra course (currently MATH 101 College Algebra or MATH 104 Precalculus Mathematics) or demonstrate their readiness for further study in calculus, statistics, or other quantitative courses through a score on a standardized mathematics exam or mathematics placement exam (currently an ACT math score of 26, an SAT math score of 600, or a mathematics department placement score of 3).

2. Students should complete a quantitative literacy course beyond College Algebra. The course should be approved for the University Core Curriculum and should have a College Algebra prerequisite. (This course need not be offered by the mathematics department.)

Rationale and context

More and more, mathematical and statistical reasoning pervades our society and economy. Our students need to be able to make judgments based on data, to grasp quantitative relationships in economic and political discourse, and to think abstractly in order to understand the uses and implications of new technology. The skills they need go beyond "college algebra"; indeed, the facility with functions and equations developed in college algebra is a prerequisite to developing these skills. To understand and calculate with the formulas of statistics, for example, one needs significant experience with variables and their functional relationships.

Moreover, we cannot predict the technology and the work environment that our students will face twenty or forty years from now. Even though manufacturing jobs once required no mathematical skills and provided a path for those not finishing high school, today, according to a recent npr report (http://www.npr.org/2012/07/10/155837962/for-manufacturing-jobs-workers-brush-up-on-math), manufacturing workers need algebra and trigonometry, our level one math requirements. Today, college graduates need more than first level math skills. A recent MAA report on quantitative literacy noted that “sociologists draw inferences from data to understand human behavior; biologists develop computer algorithms to map the human genome; factory supervisors use “six-sigma” strategies to ensure quality control; entrepreneurs project markets and costs using computer spreadsheets; lawyers use statistical evidence and arguments involving probabilities to convince jurors.” It is almost certain, however, that more, not less, quantitative skill will be required. The aim of studying mathematics, statistics or similar subjects now is not just to acquire specific skills from these courses, but to understand underlying concepts and develop abstract reasoning skills in the quantitative realm, which can
facilitate the acquisition of new quantitative and analytical skills in the future. The goal is to prepare our KU college graduates for the 21st century.

The proposal is for only a small change in the mathematics requirement that has been in place for approximately 25 years for the BA and BGS in CLAS. The second part of that requirement was referred to as the "second-level math" requirement. Even then, it was not intended to be restricted to courses in the mathematics department. In fact, one course in biology is on the list of approved courses for the requirement. This proposal offers one way to simplify the approval for this requirement by allowing a course approved for Core goal 1, learning outcome 2, to count, if it has a college algebra prerequisite. Currently on the fast track list the following courses satisfy that condition: ASTR 391, ECON 104, 142, 144, MATH 105, 115, 121, 141, 365, and PHSX 111, 112, 114, 211, 213.